Partial Regularity for Optimal Transport Maps
نویسنده
چکیده
We prove that, for general cost functions on R, or for the cost d/2 on a Riemannian manifold, optimal transport maps between smooth densities are always smooth outside a closed singular set of measure zero.
منابع مشابه
Regularity of optimal transport maps and partial differential inclusions
In this paper we deal with the regularity of planar optimal transport maps, in a “critical” case not covered presently in the literature. Following a suggestion by J.Maly, and the ideas in [1], we relate the regularity problem to a “rigidity” problem for partial differential inclusions which might be interesting in its own right. Let us start with the first problem. We give a formulation in ter...
متن کاملPartial Regularity Results in Optimal Transportation
This note describes some recent results on the regularity of optimal transport maps. As we shall see, in general optimal maps are not globally smooth, but they are so outside a “singular set” of measure zero. 1. The optimal transportation problem The optimal transportation problem, whose origin dates back to Monge [19], aims to find a way to transport a distribution of mass from one place to an...
متن کاملMax - Planck - Institut für Mathematik in den Naturwissenschaften Leipzig Representation of Markov chains by random
We systematically investigate the problem of representing Markov chains by families of random maps, and what regularity of these maps can be achieved depending on the properties of the probability measures. Our key idea is to use techniques from optimal transport to select optimal such maps. Optimal transport theory also tells us how convexity properties of the supports of the measures translat...
متن کاملNecessary and sufficient conditions for continuity of optimal transport maps on Riemannian manifolds
In this paper we investigate the regularity of optimal transport maps for the squared distance cost on Riemannian manifolds. First of all, we provide some general necessary and sufficient conditions for a Riemannian manifold to satisfy the so-called Transport Continuity Property. Then, we show that on surfaces these conditions coincide. Finally, we give some regularity results on transport maps...
متن کاملStability Results on the Smoothness of Optimal Transport Maps with General Costs
We prove some stability results concerning the smoothness of optimal transport maps with general cost functions. In particular, we show that the smoothness of optimal transport maps is an open condition with respect to the cost function and the densities. As a consequence, we obtain regularity for a large class of transport problems where the cost does not necessarily satisfy the MTW condition.
متن کامل